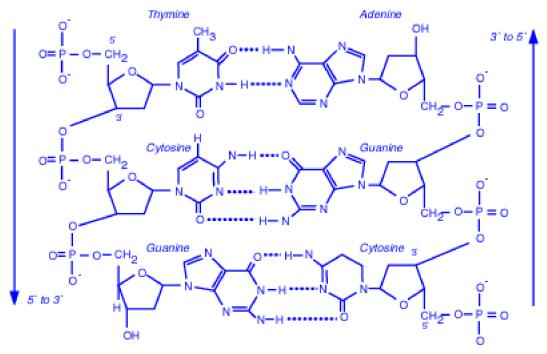
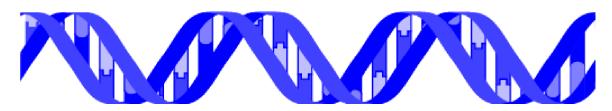

Bacterial Genetics

Pages 46-47; 210-218

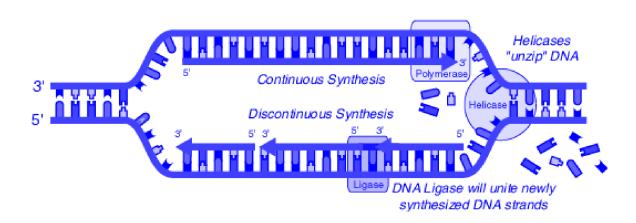

- 1. Overview (pp 46 47)
 - A. DNA
 - i. Genome
 - ii. Genes
 - a. Genotype
 - b. Phenotype
 - iii. Construct

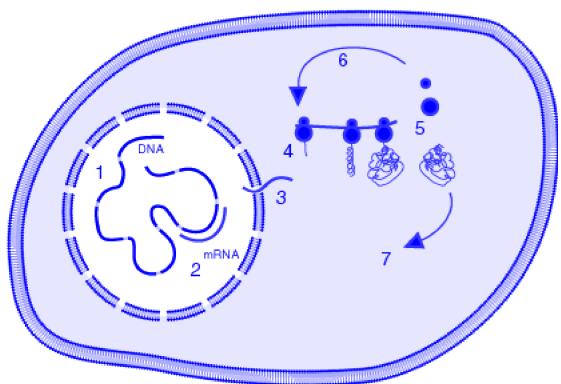
iii. Base Pairs



iv. Complimentary Base Pairing in DNA

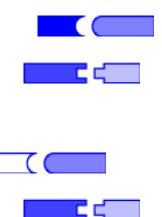
From Text: Moore Clark Vodopict.


v. Double Helix

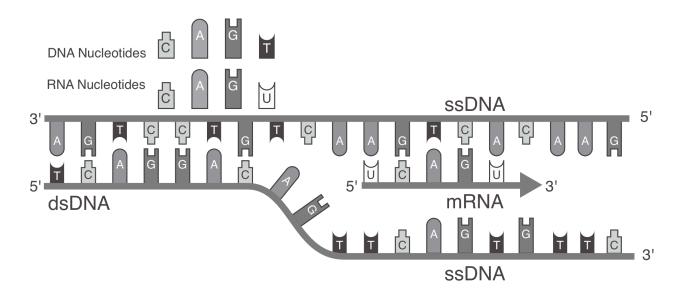

- vi. Transcription and Translation
- vii. Binary Fission
 - a. DNA ligase

Microbiology Student Outline - Bacterial Genetics

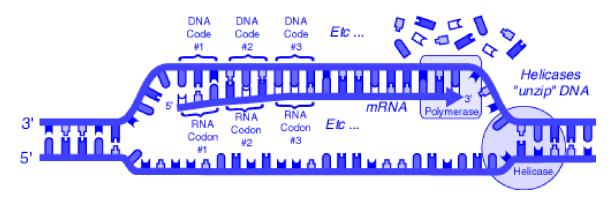
- 2. Replication of DNA (pp 210 214)
 - A. DNA Helicase
 - B. DNA Polymerase
 - i. Continuous
 - a. 3' to 5'
 - ii. Discontinuous
 - a. 5' to 3'
 - C. DNA Ligase



- 3. Transcription and Translation
 - A. Overview of Processes

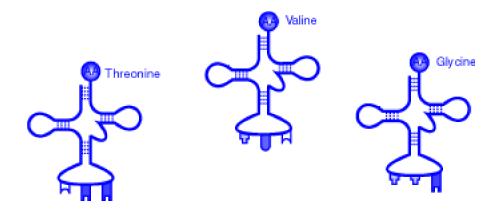


- 1. The genetic material for eukaryotic organisms (includes humans) is DNA. The information is divided up into functions segments called genes. Each gene will code for a particular structural or functional molecule necessary for cellular growth and maintenance. In this case we will assume that the gene codes for a particular enzymatic protein.
- 2. Transcription of the information from DNA into RNA (called mRNA or messenger RNA). This transcription process is necessary as ribosomes can only work with RNA.
- 3. The messenger RNA leaves the nucleoplasm via a nuclear pore and enters the cytoplasm.
- 4. First the small and then the large ribosomal subunits attach the to the mRNA in order to translate the genetic material into a protein. As they translate the mRNA they add the appropriate amino acids, according to instruction, to a growing polypeptide chain. Note that multiple ribosomes can do the translation process simultaneously (called a polysome).

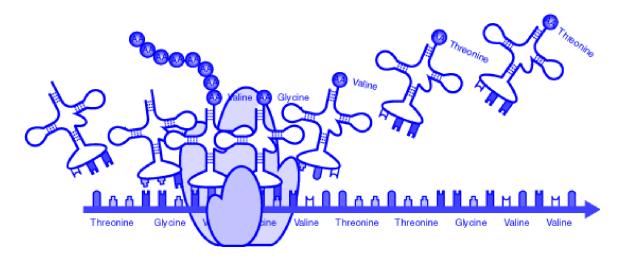

- 5. After a ribosome has finished translating the mRNA, the two ribosomal subunits and the newly formed protein disengage the mRNA.
- 6. The ribosomes can then repeat the process and translate the mRNA once again.
- 7. The newly formed protein enters the cytoplasm to do it's particular cellular function.
- B. Ribosomes (rRNA) (see p. 94)
 - i. Structure (30s & 50s ribosomal subunits)
 - ii. Function
- C. Transcription (pp 214 218)
 - i. RNA Polymerase
 - ii. Nucleotides
 - a. DNA Nucleotides
 - Thymine Adenine
 - Guanine Cytosine
 - b. RNA Nucleotides
 - Uracil Adenine
 - Guanine Cytosine
 - iii. Process of Transcription

Microbiology Student Outline - Bacterial Genetics

iv. Codes and Codons



MAN	ММ	мма	Маалин	-
RNA	RNA		mRNA	
Codon #1	Codon #2	Codon #3	Etc	


- v. mRNA Processing
 - a. Exons
 - b. Introns

Exon #1 Intron Exon #2 Exon #2

- D. Translation (pp 215 218)
 - i. Transfer RNA (tRNA)
 - a. Anticodon
 - b. Amino Acid Binding Site

DNA	mRNA	tRNA	Amino
Code	Codon	Anticodon	Acid
TTT	AAA	UUU	Lysine
TGG	ACC	UGG	Threonine
CCG	GGC	CCG	Glycine
CAT	GUA	CAU	Valine
CTC	GAG	CUC	Glutamate
GAG	CUC	GAG	Leucine
AGA	UCU	AGA	Serine
ACT	UGA	ACU	"Stop"

- ii. Steps of Translation
 - a. Initiation
 - b. Elongation
 - c. Termination
- 4. Regulation of Gene expression
 - A. Transcription Control
 - i. Chromatin Activation

Microbiology Student Outline - Bacterial Genetics

- ii. Transcription Factors
- B. Posttranscriptional Control
- C. Translational Control
- D. Posttranslational Control
- 5. Gene Regulation (pp 218 221) (see handout on *BACTERIAL GENETICS*)
 - A. Inducible Expression of a Gene (*Lactose Operon*)
 - i. Operon
 - B. Repression of a Gene
- 6. Transformation (pp 232 234) (see handout on *BACTERIAL GENETICS*)
 - Competent
 - A. Gram Positive Bacteria
 - Streptococcus pneumoniae
 - B. Gram Negative Bacteria
 - Haemophilus sp.
 - Neisseria sp.

- 7. Conjugation (pp 234, 236) (see handout on *BACTERIAL GENETICS*)
 - A. Plasmids (p. 235)
 - i. Sex Pilus
 - ii. Plasmid
 - iii. Tra Genes
 - iv. Sex Pilus
 - v. F^+ and F^-
 - vi. Hfr
- 8. Transduction (pp 234 235)
 - Bacteriophage (Phage)
 - A. Induce Lytic Cycle
 - B. Become Temperate Phage
 - i. Generalized Transduction (See also page 389, figure 13.12)
 - ii. Restricted (Specialized) Transduction (See also page 390,

figure 13.13)

- 9. Mutations (pp 226 228)
 - A. Spontaneous Mutations
 - B. Induced Mutations
 - i. Mutagens
 - a. Ultraviolet Light